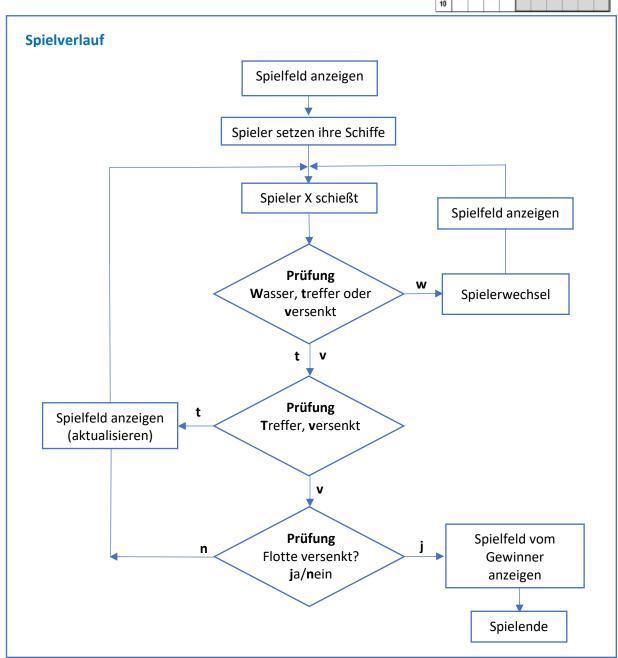

Aufgabe 4 - (Teil 1 von SCHIFFE VERSENKEN)


Situation: Laut einer aktuellen VuMA-Umfrage spielen mehr als 40 Prozent der Deutschen Computerund Videospiele. In der Altersgruppe der 14- bis 29-Jährigen beträgt der Anteil der Videospieler sogar über 70 Prozent. Die meisten Gamer interessieren sich für Action-Spiele/ Ego-Shooter, Abenteuer-Spiele und Geschicklichkeitsspiele.

Es sollte das bekannte Spiel **SCHIFFE VERSENKEN** als Python-Programm erstellt werden.

Zuerst betrachten wir den **Spielverlauf** und überlegen uns, welche Prozesse wir als **Funktionen** umsetzen können.

Folgende Funktionen leiten wir vom Spielverlauf ab:

Spielfeld anzeigen	spielfeld_anzeigen()
Spieler setzt seine Schiffe	spieler_flotte()
Spieler schießt	spieler_schiesst()
Spielerwechsel	spieler_wechsel()
Prüfung Wasser, Treffer oder versenkt	spieler_pwtv()
Prüfung Treffer, versenkt	spieler_ptv()
Prüfung Flotte versenkt	spieler_pfv()

In der heutigen Aufgabe geht es zuerst um die Ausgabe des <u>Spielfeldes</u> zu **SCHIFFE VERSENKEN**. Dafür werden wir den Datentyp "Liste" einsetzen.

a.) Spielfeld anzeigen

Für das Spielfeld benötigen wir eine Liste mit **zehn** Zeilen und **zehn** Spalten die das Quadrat aus 100 Ziffern bilden:

	ΙA	B	C I	DΙ	E	F	G	Н		J
0		- 1			١	١				
1				-						
2				-						
3										
4										
5				-	- 1					
6				-	- 1					
7				-	- 1					
8				-						
9				-						П

Hinweis:

Wir beginnen mit der 0 und nicht mit der 1, da wir die Eingabe des Benutzers auf "einstellige Eingabe" ein Buchstabe (a - j) und eine Ziffer (0 - 9).

Am Anfang vom Programm wird als erstes das Spielfeld als **Liste** angelegt mit den Ziffern 0 bis 99 oder einem Zeichen bzw. Leerzeichen.

Für die Ausgabe des Spielfeldes werden die Inhalte der Liste mit dem Zeichen "|" voneinander getrennt. Erstellen Sie hierzu die Funktion: spielfeld_anzeigen()

Datentyp Liste

Eine Liste ist eine Sequenz von Objekten. Sie kann Elemente unterschiedlichen Objekttyps enthalten. Man kann sich eine Liste als ein- oder mehrdimensionales Feld vorstellen (Array).

1	z = [3, 6, 12.5, -8, 5.5]	← Liste mit 5 Elementen
2	print(z)	gesamte Liste
3	print(z[0])	ein Element
4	print(z[0:3])	Ein Teilbereich (engl. Slice)

Ausgabe:

[3, 6, 12.5, -8, 5.5]

3

[3, 6, 12.5]

Achten Sie darauf, der Listen Index beginnt immer mit 0!

Programmierübungen zum Kurs: Python – Einstieg in die Programmierung

<u>Hinweis:</u>

Erstellen Sie zuerst eine Ausgabe mit drei **print()**-Zeilen ohne Liste und ersetzen Sie danach die Ziffern mit den Feldern der Liste (enthält die Ziffern 1 bis 9).

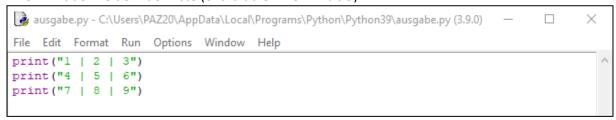


Abb.: Python-Programm: Ausgabe mit drei print()-Zeilen

Ihr Programm... afg4_spielfeld.py

def spielfeld_anzeigen():

print()-Ausgaben

#Hauptprogramm

spielfeld_anzeigen()